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I t  is well  known that  the h e a t - t r a n s f e r  p r o c e s s  in a sound field is intensified in compar i son  with the 
s t a t iona ry  case ,  in which case  it  was  shown [1] that  these  changes  a re  due to s ta t ionary  seconda ry  flows. The 
case  of a s imple  sound field is inves t igated in the overwhelming major i ty  of ca ses .  As shown in [2], however ,  
the s t r u c t u r e  of s t a t iona ry  secondary  flows in a complex  sound field is cons iderab ly  modified,  which mus t  be 
r e f l ec ted  in both local  and in tegra l  c h a r a c t e r i s t i c s  of the h e a t - t r a n s f e r  p r o c e s s .  

Cons ide r  heat  t r a n s f e r  of a c i r c u l a r  cy l inder  of  rad ius  a,  p laced in a h igh-f requency complex  sound 
field cons is t ing  of  two plane waves .  The  su r face  t e m p e r a t u r e  of the cyl inder  Tw and of the sur rounding  m e -  

d ium ~ is  a s s u m e d  to be constant ,  while the t e m p e r a t u r e  d i f ference  (Tw - T~)  is a s s u m e d  to be  so smal l  
that  the change in phys ica l  p r o p e r t i e s  of the fluid, as well  as na tura l  convection,  can be neglected.  Neglect ing 
a lso  d iss ipa t ion  ef fec ts ,  the ene rgy  equation is wr i t ten  in the f o r m  

with boundary conditions 

OT 
0~ 

e 8(•, T) e -~ 
i~ r 8(r, O) - - - - ' ~ V  r (1) 

T = t  for r = O ,  T = O f o r  r - ~ o o ,  

where  T = (T - Too)/(T w - Tin). The r ema in ing  quanti t ies  a re  defined in [2]. 

As e << 1, by using a pe r tu rba t ion  method we r each  a solution of Eq. (1) in fo rm of the s e r i e s  

(2) 

T = T0 -- sT1 + O(e2). 

Using a s i m i l a r  expansion for  the s t r e a m  function r and substi tut ing in Eq. (1), we obtained [3] 

l + r  0(r  0) - - - - ~ V ~ T o ,  (3) 

where  r is the s t r e a m  function of s t a t iona ry  secondary  flow in the externa l  region.  

The solution of  Eq. (3) mus t  sa t i s fy  the second condition of re la t ion  (2), and for  r -* 0 is a sympto t i ca l ly  
matched with the solution in the in terna l  region.  

Using the in te rna l  v a r i a b l e s  defined by Eq. (7) of [2], as  well  as putting Res t  = O(1) and (eZPr) = 0(1),  
Eq. (1) is wr i t t en  in the f o r m  [3] 

~)~ + e k | -- "-~-~ q ) ~  "-~ 2(e*pr) Oil 2 + 0 (Ca), (4) 

where  F is  the t e m p e r a t u r e  in the in terna l  region (Stokes layer ) .  We seek  a solution of (4) in the t b r m  

F -- F0 + sF1 -- 0(e2). 

I t  was  shown [3] that  the f i r s t  expansion t e r m  is the solution of the equation 

a(mCSt) Fo) i 02Fo 
0 (n. 0) 2 (~2Pr) & '  (5) 
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w h e r e  m ~ t  ) t~  is the s t r e a m  function of the in ternal  secondary  flow. 

It  follows f rom Eq. (5) that if  (s << 1, the in ternal  region is essent ia l ly  the rma l ly  conducting. When 
(e2Pr) >> 1, the width of  the t e m p e r a t u r e  l aye r  is cons iderably  less  than the width of the Stokes l ayer ,  and in- 
t e r n a l  flows play  an important  ro le  in the hea t - t r an s f e r  p rocess .  This  fact  was f i r s t  establ ished in [1]o 

When the h e a t - t r a n s f e r  p r o c e s s  is de termined  by ex t e rna l  flows, the t empera tu re  field is descr ibed  by 
Eq.  (3). It  can be seen that  for  (P rRes0  >> 1 the whole external  t h e rm a l  region has the nature  of a boundary 
l aye r  whose width is on the o r d e r  of O[a(PrRes t ) - i /2 ] .  Taking this fact  into account,  we also introduce v a r -  
iables  cor responding  to a t he rma l  boundary l aye r ,  in which the t e m p e r a t u r e  is O(1) and the s t r e a m  function 
O ( ~ ) ,  w h e r e  ~ = (P rRes t )  -1/2 << 1. Then 

to(Y , 0 ) =  To(r. 0), Y • ...(st)_ ~.7.(st) = vlo -- ~vao �9 (6) 

We note that  s ince in what follows we use  the solutions of the hydrodynamieal  pa r t  of the problem,  ob-  
tained under  the assumption Res t  << 1, the condition (P rRes t )  >> 1 implies  that we cons ider  the case  of la rge  
Prandt l  numbers ,  i .e . ,  P r  >> 1. 

The  in ternal  expansion of the ex te rna l  s t r e a m  function ~s t )  is wri t ten  in the fo rm 

}(st) + • + 0 (~'), 
10 ~--- 21 . . 

where  

f -  ,.,-lO 1 �9 - }-2 [ -1o I 
zi = Y \ or /r=o' z~ = ~- ~,~/Y=o" 

(7) 

Using the smallness condition of ~<, the solution of Eq. (3) is expanded in the series 

to = too + • + O(x'-'). (8) 

Substitut ing (7) and (8) into Eq. (3) and res t r i c t ing  ourselves to f i r a t - o r d e r t e r m s  in ~,  we obtain the fo l low- 
ing equation in t e rms  of the var iables of Eq. (6): 

0 (q ,  too ) Ostoo 
0 (Y, O) -- Oy 2 (9) 

with boundary conditions 

too----O for Y-+oo ,  t o o = i  for Y = O ,  (10) 

The second boundary condition of (I0) follows from the fact the region of the Stokes layer is essentially ther- 
mally conducting, due to which one can neglect the temperature change in this region. This is satisfied by the 
condition (e2 Pr) << 1, which imposes an upper bound on the Prandtl number. 

Since the analytic representation of ~st) depends on the relation between the frequencies of the two 
waves [2], we consider the case of different frequencies. We place the coordinate system at the leading point 
of external secondary flows at the cylinder surface, introducing the variable 

B2b -2  sin20 t ] 
6 1 - - 2 0 _ a r c t g  i ~ O  l j  + ~" 

Using (7), as well as relation (25) of [2], Eq. (9) is written in the form 

Otoo Otoo 02too 
3N 1 sin % ~ -- 3NxY cos 61 0--7 = 'oy"' 
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whose solution is 

xt 

= - - - -  e-~'ac, too t r (t12) ,! 
0 

(li) 

where  

x 1 = Y cos ((r~/2); N1 -- (t ~ 2B~b -~ cos 201~B4b-4)~/2; 

and r(~) is the gamma  function. Using (11), we calculate the local  and integral  hea t - t r ans fe r  coefficients ,  
evaluated at the cyl inder  radius 

[ 6 ~ 1/2 ~ , 4 4 1 Nu a = I~ j ( P r R e a t ) ~ l ~ ( i ~ 2 B " - b - ~ c o s 2 0 ~ B  b-  ) /~lcos(~/2)l, 

N---u a = 0.88 (Pr Rest)~/~ ( i ~  2B'Zb - z  cos 20 L -& B4b-4) ~/~. 
(12) 

It can be noted that for B = 0 express ion (12) t r ans fo rms  to the dependence charac te r iz ing  the hea t - t r ans fe r  
p r o c e s s  of a c i r c u l a r  cyl inder  in a s imple sound field [ll 

(Pr B%t)i/2 ! cos (0-s - ~ / ' ) )  t ,  

_ _  A,  ( 1 3 )  
Nu~ = 0.88 (Pr Rest) */2 := 0,88 : V ~ ,  

where  ~ is the thermal -conduc t iv i ty  coefficient of the fluid and A 1 and w 1 are  the veloci ty  amplitude and 
f requency in the f i rs t  wave. In express ions  (12), (13) the absolute value is chosen,  since the the rma l  conduc-  
t ivi ty coefficient  is a positive quantity. 

Thus,  the analytic dependence descr ibing heat t r a n s f e r  of a cyl inder  in a complex sound field for the 
case  of different osci l lat ion frequencies  differs  f rom the analog express ions  for a simple sound field only by 
the p resence  of an additional fac tor  of the fo rm 

(i ~- 2B'b -~" cos 201 ~- B4b-4) 1/~, 

while the nature of the distr ibution of the local  hea t - t r ans fe r  coefficient over  the cyl inder  sur face  does not 
change,  the distr ibution is symmet r i c  with r e spec t  to the line passing through the ex t r emum and the center  
of the cyl inder  (Fig. la) ,  and the maximum of the hea t - t r ans f e r  coefficient coincides with the leading point of 
external  flows at the cyl inder  sur face .  

Consider  the conditions under which the p resence  of a second osc i l l a to ry  motion leads to enhancement 
of the hea t - t r ans fe r  p roces s  in compar i son  with the case  of a simple sound field, i .e. ,  

I -~ 2B2b -'~ cos 20, -~ B4b - I  > t ~ (Bb-*) ~ > --2 cos 201. {14) 

It follows f rom the la t ter  relat ion,  in par t icu lar ,  that  independently of the ampl i t ude - f r equency  relat ions the 
h e a t - t r a n s f e r  p rocess  in a complex sound field occurs  more  intensely than in a simple fieId if the angle be-  
tween the propagat ion direct ions  of the two waves sat isf ies  the condition 

IO~I ~ u/4 + un  (n - -  O, t . . . .  ). 

b 

1 

Fig.  i 
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I t  can be ver i f i ed  that  for  0 i = 0 o r  r t he re  is m a x i m u m  enhancement  of heat  t r a n s f e r  for  ass igned values  
of  b and B. Bes ides ,  i f  (Bb-l) ~ > 2, the p r e s e n c e  of a second osci l la t ion a lso  leads to enhancement  of heat  
t r a n s f e r  independently of  the value of 01. When re la t ion  (14) is not sa t i s f ied  the p r e s e n c e  of a second o s c i l l a -  
t ion wor sens  heat  t r a n s f e r  in c o m p a r i s o n  with the case  of a s imple  sound field, while th is  si tuation can be 
r ea l i z ed  when the p r e s e n c e  of  a second osc i l la t ion  comple te ly  s u p p r e s s e s  convect ive  heat  t r a n s f e r .  This  
o c c u r s  when 

t ~ 2B2b -~ cos 20~ ~ B4b "-a = 0 

(15) 

o r  
B = b ,  O x = ~ ( 2 n a  u t ) /2  (n = 0 ,  i , . . . ) .  

Thus ,  when the p lanes  of both osc i l la t ions  a r e  pe rpend icu la r  to each  o ther  and the a m p l i t u d e - f r e q u e n c y  r e -  
la t ions  obey Eq. (15), a cy l inder  p laced  in a complex  sound field does not exchange ene rgy  with the su r round-  
ing space .  This  impl ies  that  h e a t - t r a n s f e r  p r o c e s s e s  by  convect ion occur  s ignif icant ly  m o r e  slowly than by 
t h e r m a l  conductivi ty.  At f i r s t  g lance  this  odd pa t t e rn  is explained by the fact  that  under  the conditions enu-  
m e r a t e d  above,  the ex te rna l  s econda ry  flows gene ra t ed  by each osc i l l a to ry  motion cancel  each other ,  a c c u r -  
a te ly  up to t e r m s  of o r d e r  O ( 6 a e / a ) .  

Cons ide r  the ca se  of  ident ical  f requenc ies .  P lac ing  the coordinate  s y s t e m  at the leading point of e x t e r -  
nal  s econda ry  flows and using re la t ion  (32) of [2], as  well  as  Eq. (7), Eq. (9) is wr i t ten  in the f o r m  

t~too Otoo 02t00 
3N~ [sin (o 2 • [~) ~ A] ~ - -  3 N 2 Y c o s  ((~2 ~ ~) -gp- = "Oy~,, (16) 

w h e r e  /~ = a r e s in  A; A = (2B sin 0 i �9 s in  q~),/N 2, and 

N2 = [(t ~ B s cos 201 ~ 2B cos q~.cos 01) s ~ (B z sin 20x -~2B sin 01 COS q~)g]l/2; 

v~ = -*- [20 - -  [~ - -  arotg ( D / C )  ~ ~];  D - -  B s in  0~ . cos  q~ 

+-~Bt  ~sin20,; C = ~ + B c o s O ~ ' c o s q ~ + ~ B ~ c o s 2 0 ~ ,  

where  the  plus s i g n r e f e r s  to the ca se  in which the fluid flow n e a r  the su r face  occu r s  c lockwise ,  and the minus 
s ign r e f e r s  to counte rc lockwise  flow. 

Introducing the v a r i a b l e  

x2 = Y - 
[V i - A~ -- cos (% _+ ~) -V A~ll/~' 

Eq. (16) is reduced  to an o rd i na ry  d i f ferent ia l  equation, whose solution is desc r ibed  by re la t ion  (11) with the 
only d i f fe rence  that  x l mus t  be rep laced  by x2.. The e x p r e s s i o n s  f o r t h e  local  and in tegra l  h e a t - t r a n s f e r  c o -  
eff ic ients  then acqui re  the f o r m  

_ [ ~ ~1/~ ,D_,^ ~1/~ ~x/~ sin (% + ~) :e A 
N u ~ .  ~ 1  ~ " ~  "'~ [ r  t - ~ -  r + ~) ~ A%]'~' 

~ a  = t 3--11/2 (PrR%t) '/2 N~/~ [ ( 2  ~/ t - -  A ~ + 2A[} - -  A ~)  '/~ (17}  

~- (2 V i - -  A ~ a u 2A[~ - -  An) ' /~] .  

Figu re  1 shows the d is t r ibut ion of the local  h e a t - t r a n s f e r  coeff ic ient  ove r  the  sur face  of the cyl inder  
fo r  d i f ferent  va lues  of the phase  d i f fe rence  (a - ~ = 0, b - ~ = 45~ while 

(e ~ Pr) << t, ~h -- (%, A1 = A,, 

B = 1, 01 = 90 ~ Under  ce r t a in  conditions the d is t r ibut ion of the local  h e a t - t r a n s f e r  coeff icient  is not s y m -  
m e t r i c  with r e s p e c t t o  the line pass ing  through the leading point  of  the ex te rna l  s econda ry  flows and the cen te r  
of the cy l inder .  Th is  a s y m m e t r y  is  due to the p r e s e n c e  of l a r g e - s c a l e  c i r c u l a t o r y  motion,  whose in tens i ty  is 
c h a r a c t e r i z e d  by the p a r a m e t e r  A. When A = 0 l a r g e - s c a l e  motion is absent  and the nature  of  secondary  
f lows,  as  well  as the dis t r ibut ion of the loca l  h e a t - t r a n s f e r  coeff icient ,  coincide accu ra t e ly  UP to c o r r e c t i v e  
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fac tors  with s imi la r  effects occur r ing  in a simple sound field (see Fig.  la) .  In par t icu lar ,  if B = 0, i.e., the 
second oscil lat ion is absent,  A = 0, N 2 = 1, and express ions  (17) reduce to (13). 

Excluding the case  B = 0 f rom considerat ion,  it can be said that the hea t - t r ans fe r  coefficient in a c o m -  
plex sound field is maximum for 81 = ~ = 0, while 

Nu a = 0.88(Pr R%t)it2(1 -+- B), 

i . e . ,  heat t r ans f e r  is determined by the total  veloci ty  amplitude. 

When B = 1, 01 = 0, ~p = v (or e 1 = 7r, ~a = 0) there  is no osc i l l a to ry  motion, since the osci l la t ions can-  
eel each other ,  and therefore  there  is no s ta t ionary motion of the fluid. This leads to the consequence Nu a = 
0. 

Thus,  the p resence  of l a rge - sca l e  c i rcu la to ry  flow leads to a s y m m e t r y  in the distr ibution of the local 
hea t - t r ans fe r  coefficient,  where to the extent of intensity enhancement of this motion (the p a r a m e t e r  A in-  
c reases )  there  is a suppress ion of Schlichting flow, and for  A > 1 there  is no region of r ec ip roca l  flow. We 
mention that re la t ions (17) were obtained for A -< 1. It can be shown that when A inc reases ,  heat exchange 
worsens ,  and for B = 1, 01 = ~a = 90 ~ there  is no heat exchange. Indeed, in this case  Eq. (9) reduces  to an 
equation of the thermal -conduct iv i ty  type 

Otoo 02too 
- -  3 7 6 -  = O F "  " 

Since the boundary conditions (10) have no dependence on 0, the equation reduces  to 

d"tooldY" = O, 

whose solution, bounded at infinity, is t r iv ia l  (too = 0). 

When the hea t - t r ans f e r  p roce s s  is determined by internal secondary  flows the t empera tu re  field is de-  
scr ibed  by Eq. (5), while if (s ~ 1, the thermal  boundary l ayer  is significantly sma l l e r  than the Stokes 
l aye r ,  and its t r ansve r se  size is of  the o rde r  of  O [a(e 2 Pr) - l /3] .  Taking this into account, we introduce v a r -  
iables corresponding to the the rma l  boundary layer  

h = h-l~, t0(h, 0) = F0(~, 0), A = (8" Pr)-l/3. 

We expand the cur ren t  function miS0 t and the t empera tu re  t o in se r ies :  

ra (~) = A~gll + A3~ ~ 0 (h4),: t o = too + Atol + 0 (AS), 10 , , 

where  

(18) 

Substituting (18) into (5) and res t r i c t ing  the discussion to f i r s t - o r d e r  t e r m s  in A, we obtain 

a 2 
0(9"r  too) i too 

Off,, O) = 2 ol, ~ 

with boundary conditions 

too----O for h - + o o ,  t o l = i  for h = O .  

(19) 

Cons ider  the case  of different f requencies .  We place the coordinate sy s t em at the leading point of in-  
t e rna l  flows at the cyl inder  surface .  Introducing then the var iab le  

- B~b - l s i n 2 0 1  1 
20 Gr a arctg | 

L l "-b B b c o s  20 i J 

6 0 3  



as  well  as using expres s ion  (24) of [2], Eq. (19) is wr i t ten  in the f o r m  

o~too ot Otoo 1 
2hN 3 sin % ~ - -  h2Ns cos % - ~  ~ 2 Ohm' 

whose solution is 

where  

xs 
3 

too = t - -  r (1/3) Y e-~Sd~' 
0 

(20) 

N3 = (i + 2B'b -~ cos 201 + B~b-~)~/~; 

( ~ ) x / s  h sin1/'% 

sinll~xd ~ 

The local  and in tegra l  hea t -exchange  coeff ic ients  acqui re  then the fo rm 

/ -41 ~ a \ 113 Nua = 0.6 [ ~ - ~ ) ( t + 2 B " b - ' c o s 2 0 , - b B t b - ' ) ' l '  sin'/~% 
] as \1 .13  t 

/ ,4 "~ \ 1 I s  - k , ~  = 0;52 ~ - -  (i + 2B2b -1 cos 201 + B4b-~)'/6. Nu~ V_v% 

(21) 

It  t he re  is no s econda ry  o sc i l l a t o ry  motion (B = 0), exp res s ion  (21) reduces  to the re la t ions  descr ib ing  
the hea t -exchange  p r o c e s s  in a s imple  sound field [1, 3] 

/ A ~ ',lis sinZ/220 ) , , o  , , , , ,  

,. o / (22) 

N,~ = 0.,52 k ~ - ~  j . 

The coeff icient  obtained, however ,  in exp re s s ion  (22) for  the in tegra l  coeff ic ient  of heat exchange di f fers  f r o m  
the r e su l t  of [3]. F o r  this r e a s o n  we provide  some  detai l .  

Since the e x p r e s s i o n  for  the local  hea t -exchange  coeff icient  (22) coincides  with [1], the in tegra l  hea t -  
exchange coeff ic ient  is de t e rmined  in the f o r m  

2 k sinl/2kdk 

where  k = 20. The in tegra l  is ca lcula ted  as follows. We denote 

z = y sin2/Sxdx, dz = sina/~kdk; 
0 

then 

i \1/3 ---- i dZ 3z2/S[~'~3(isinX/27"dxl  ~ -2 ~ ~ 
t!sin'/Sxdx) o 
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Using [4] 

{ sin ' /2 7~d)~ = n'/el" (3/4) ~ ,  4 ~1/2, 
r (514) -- 

0 

we obtain the required  resul t .  

It follows f rom relat ionship (22) that the analytic dependences describing heat exchange of a cylinder in 
a complex sound field for the case  of different oscil lation frequencies differ f rom the analog relat ions for a 
simple sound field by the p resence  of a supplementary  factor  of the type 

(t ,4- 2B2b -I cos 204 + B4b-~) v6, 

while the distr ibution of the local  heat-exchange coefficient over  the surface of the cylinder remains  s y m -  
me t r i c .  It canbe  shown that if B2b -1 > - 2  cos 201, the p resence  of a second osci l la tory  motion leads to en- 
hancement  of the heat-exchange p rocess ,  while for 01 = 0 or  ,v maximum enhancement occurs  for  assigned 
values of b and B. When the oscil lat ion planes are  perpendicular  to each other,  and the ampl i tude - f requenc j  
cha r ac t e r i s t i c s  sa t isfy  the relat ion B 2 = b, the p resence  of a second osc i l la tory  motion completely suppresses  
convective heat exchange. 

Cons ider  the case  of identical frequencies (in this case  it is p r imar i l y  assumed that (s2 Pr)  >> 1). P l a c -  
ing the coordinate sys t em at the leading point of secondary  flows and using relationship (31) of [2], Eq. (19) 
is wri t ten in the form 

Otoo t 02too 
2hN~ [sin (04 4- 6) :t: A] ~ -- h2N2 cos (% 4- ~) Oh = 2 Oh ~ (23) 

where a4 = ~(20 - a rcs in  A - a rc tg  (D/C)). 

Introducing the var iable  

(_~__~)1/3 h [sin (~ ~ ~)~-A] 1/2 

[sin (Z --+ ~) ~ A]I/2dz 
t 0  

Eq. (23) is reduced to an ord inary  differential  equation whose solution is descr ibed by relat ionship (20), where 
x 3 must  be replaced by x 4, The expression for the local  hea t - t r ans fe r  coefficient then acquires  the form 

( &  a )~/3 [sin(% + ~) X 
Nu~ = 0,6 

N~[!'[sin(7.• (24) 

It follows f rom (24) that, as in the case  (s 2 Pr) << 1, the distribution of the local heat-exchange coeffi-  
cient over  the cyl inder  surface  is symmet r i c ,  which is due to the p resence  of a l a rge - sca le  c i rcu la to ry  flow. 
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